Unified framework for representing and ranking
نویسندگان
چکیده
In the database retrieval and nearest neighbor classification tasks, the two basic problems are to represent the query and database objects, and to learn the ranking scores of the database objects to the query. Many studies have been conducted for the representation learning and the ranking score learning problems, however, they are always learned independently from each other. In this paper, we argue that there are some inner relationships between the representation and ranking of database objects, and try to investigate their relationships by learning them in a unified way. To this end, we proposed the Unified framework for Representation and Ranking (UR) of objects for the database retrieval and nearest neighbor classification tasks. The learning of representation parameter and the ranking scores are modeled within one single unified objective function. The objective function is optimized alternately with regard to representation parameter and the ranking scores. Based on the optimization results, iterative algorithms are developed to learn the representation parameter and the ranking scores on a unified way. Moreover, with two different formulas of representation (feature selection and subspace learning), we give two versions of UR. The proposed algorithms are tested on two challenging tasks – MRI image based brain tumor retrieval and nearest neighbor classification based protein identification. The experiments show the advantage of the proposed unified framework over the state-of-the-art independent representation and ranking methods. & 2014 Published by Elsevier Ltd.
منابع مشابه
A Unified Framework for Post-Retrieval Query-Performance Prediction
The query-performance prediction task is estimating the effectiveness of a search performed in response to a query in lack of relevance judgments. Post-retrieval predictors analyze the result list of top-retrieved documents. While many of these previously proposed predictors are supposedly based on different principles, we show that they can actually be derived from a novel unified prediction f...
متن کاملRepresenting a method to identify and contrast with the fraud which is created by robots for developing websites’ traffic ranking
With the expansion of the Internet and the Web, communication and information gathering between individual has distracted from its traditional form and into web sites. The World Wide Web also offers a great opportunity for businesses to improve their relationship with the client and expand their marketplace in online world. Businesses use a criterion called traffic ranking to determine their si...
متن کاملA Unified Algorithmic Approach for Efficient Online Label Ranking
Label ranking is the task of ordering labels with respect to their relevance to an input instance. We describe a unified approach for the online label ranking task. We do so by casting the online learning problem as a game against a competitor who receives all the examples in advance and sets its label ranker to be the optimal solution of a constrained optimization problem. This optimization pr...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملStatic Ranking of Web Pages, and Related Ideas
This working paper reviews some different ideas in link-based analysis for search. First, results about static ranking of web pages based on the so called randomsurfer model are reviewed and presented in a unified framework. Second, a topic-based hubs and authorities model using a discrete component method (a variant of ICA and PCA) is developed, and illustrated on the 500,000 page English lang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014